skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arratia, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the first threefold differential measurement for neutral-pion multiplicity ratios produced in semi-inclusive deep-inelastic electron scattering on carbon, iron, and lead nuclei normalized to deuterium from CLAS at Jefferson Lab. We found that the neutral-pion multiplicity ratio is maximally suppressed for the leading hadrons (energy fraction z 1), suppression varying from 25% in carbon up to 75% in lead. An enhancement of the multiplicity ratio at low z and high p T 2 is observed, suggesting an interconnection between these two variables. This behavior is qualitatively similar to the previous twofold differential measurement of charged pions by the HERMES Collaboration and, recently, by CLAS Collaboration. The largest enhancement was observed at high p T 2 for heavier nuclei, namely, iron and lead, while the smallest enhancement was observed for the lightest nucleus, carbon. This behavior suggests a competition between partonic multiple scattering, which causes enhancement, and hadronic inelastic scattering, which causes suppression. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. null (Ed.)